Outline: Curvature of Surfaces

1. The Second Fundamental Form and Principle Curvatures

Let S be an oriented surface, and let p be a point on S. The second fundamental form of S at p is a certain quadratic form $I I$ that can be defined on the tangent space $\vec{T}_{p}(S)$. The eigenvalues κ_{1}, κ_{2} of the second fundamental form are called the principle curvatures of S at p.

2. Relation to the Hessian

Suppose that S is the graph of a function, i.e. a surface of the form $z=f(x, y)$ for some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, with normal vectors pointing upwards. Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S at which the tangent plane is horizontal. In this case, the second fundamental form of S at $\left(x_{0}, y_{0}, z_{0}\right)$ is just the Hessian $H f\left(x_{0}, y_{0}\right)$. In particular, the principle curvatures κ_{1} and κ_{2} are the eigenvalues of the Hessian.

More generally, if S is any oriented surface and p is any point on S, we can rotate S until the tangent plane is horizontal. In this case, the portion of S near p looks like the graph of a function, and the second fundamental form of S at p is the Hessian of this function at p. Thus, the second fundamental form can be thought of as a "rotated" version of the Hessian.

3. Gaussian and Mean Curvature

Let S be an oriented surface, and let p be a point on S. The Gaussian curvature and mean curvature of S at p are defined by the formulas

$$
K=\kappa_{1} \kappa_{2} \quad \text { and } \quad H=\frac{\kappa_{1}+\kappa_{2}}{2}
$$

where κ_{1} and κ_{2} are the principle curvatures of S at p.
The Gaussian curvature is also defined by the formula

$$
\vec{N}_{u} \times \vec{N}_{v}=K \vec{X}_{u} \times \vec{X}_{v}
$$

for any parametrization $\vec{X}(u, v)$.
Geometrically, K is positive if S is like the surface of a sphere near p, and K is negative if S is more like the surface of a hyperbolic paraboloid near p.

4. Principle Directions

The principle directions of a surface S at a point p are the directions of the eigenspaces of the second fundamental form. Thus the principle directions are a perpendicular pair of tangent directions to the surface at each point. For example, on a surface of revolution, the principle directions are the directions of the coordinate lines for the standard parametrization.

